Caracterización de los encajes ordenados inducibles entre hiperespacios

Thumbnail Image

Date

2020

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Nacional Mayor de San Marcos

Abstract

Un continuo es un espacio métrico, compacto, conexo y no vacío. Para un continuo X se considera la colección C(X) = fA ⊂ X |A es cerrado, conexo y no vacío g denominado hiperespacio de subcontinuos del continuo X. Para dos continuos X e Y y la función f : X → Y continua, sea C(f) : C(X) → C(Y ) la función inducida entre los correspondientes hiperespacios. Una función H : C(X) → C(Y ) entre hiperespacios es un encaje ordenado si H bajo su imagen es homeomorfismo y si A y B son elementos de C(X) tal que A ⊆ B; entonces H(A) ⊆ H(B). Una función G : C(X) → C(Y ) entre hiperespacios es indeducible si existe una función g : X → Y continua tal que G = C(g). De aquí damos una caracterización de ellos: Si F : C(X) → C(Y ) y G : C(Y ) → C(X) son encajes ordenados y de tipos F1; entonces X es homeomorfo a Y.

Description

Keywords

Hiperespacio, Grupos continuos, Espacios topológicos

Citation

Villegas, L. (2020). Caracterización de los encajes ordenados inducibles entre hiperespacios. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.