Teorema de Branges

Thumbnail Image

Date

2013

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Nacional Mayor de San Marcos

Abstract

Presentaremos la demostración del Teorema probado por Louis de Branges en (1984): “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces |a_n |n para todo n  1. Además si la igualdad se da para algún n  1, entonces f(z)=z/〖(1-αz)〗^2 , pertenece a C, con |α|=1 y todo z en D, donde D es el disco unitario en el plano complejo”. En un primer momento, presentaremos las conjeturas de Robertson y de Bieberbach una vez que la conjetura de Milin implica la de Robertson, que a su vez alude a de Bieberbach. Lo que Branges probo, en verdad fue la conjetura propuesta por Milin en (1967), que afirma: “Si f:D C es analítica e inyectiva cuya expansión de series de potencias es dada por ∑_(n=1)^∞▒〖a_n z^n 〗 con a_1 = 1, entonces ∑_(m=1)^n▒∑_(k=1)^m▒〖(k|γ_k |^2- 1/k) ≤0〗 donde γ_k son los coeficientes de expansión de series de potencias de la función (1/2) log⁡(z^(-1) f(z))“ la cual implica la conjetura de Bieberbach.

Description

Keywords

Conjetura de Bieberbach, Polinomios de Jacobi

Citation