Espectro de Fucik para un sistema acoplado

Thumbnail Image

Date

2017

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Nacional Mayor de San Marcos

Abstract

Estudia el Espectro de Fucik para un sistema acoplado de ecuaciones diferenciales ordinarias con valores en la frontera, donde λ+, λ−, μ− ∈ R+ ∪{0} , w+ = max{w, 0 } , w− = max{−w, 0 } y Bw = 0 representa las condiciones de frontera tipo Dirichlet o Neumann. Obtiene familias explícitas de puntos (λ+, λ−, μ−) del espectro de Fucik y construye familias explícitas de soluciones no triviales (u, v) para el problema dado. Demuestra que el espectro de Fucik está formado por superficies y describe explícitamente la parte trivial del espectro, correspondiente a soluciones que no cambian de signo, probando que para el problema Dirichlet está compuesto por un plano y un cilindro hiperbólico, y para el problema Neumann está compuesto por los tres planos coordenados. Luego, usando el Teorema de la Función Implícita, prueba la existencia de superficies en la parte no trivial del espectro, correspondiente a soluciones que cambian de signo.

Description

Keywords

Ecuaciones diferenciales - Soluciones numéricas, Teoría espectral (Matemáticas)

Citation

Rojas, S. (2017). Espectro de Fucik para un sistema acoplado. [Tesis de maestría, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Unidad de Posgrado]. Repositorio institucional Cybertesis UNMSM.