Existencia de solución débil de un problema semilineal elíptico

Thumbnail Image

Date

2016

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Nacional Mayor de San Marcos

Abstract

Prueba la existencia de la solución débil del problema de Dirichlet semilineal donde Ω es undominio (abierto y conexo) acotado en RN de clase C2 , f : Ω x R R es una función de Carathéodory que satisface ciertas condiciones y h E Lp (Ω). La existencia de la solución débil del problema Dirichlet semilineal se prueba por medio del siguiente resultado: todo funcional definido en un espacio de Banach que tiene mínimo y es Fréchet diferenciable en dicho espacio, posee un punto crítico. En nuestro trabajo construiremos un funcional sobre H10 (Ω) cuyo punto crítico será la solución débil del problema mencionado.

Description

Keywords

Ecuaciones diferenciales elípticas - Soluciones numéricas, Funciones analíticas, Análisis funcional

Citation

Rojas, E. (2016). Existencia de solución débil de un problema semilineal elíptico. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Académico Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM.