El Teorema de Hasse - Minkowski sobre Q

Thumbnail Image

Date

2023

Journal Title

Journal ISSN

Volume Title

Publisher

Universidad Nacional Mayor de San Marcos

Abstract

Estudia el teorema de Hasse-Minkowski sobre Q el cual establece que una forma cuadrática no degenerada de coeficientes racionales tiene solución no trivial si y solo sí, la forma cuadrática tiene solución no trivial sobre los números reales R y sobre cada cuerpo pádico Qp. Para esto, en el Capítulo 1 se presentan algunos preliminares sobre el tema. En el Capítulo 2, se estudian formas bilineales y formas cuadráticas. En el Capítulo 3, se presentan generalidades sobre cuerpos locales, para lo cual los números racionales Q, los números reales R y los campos pádicos Qp (para p número primo) son casos especiales. El símbolo de Hilbert se define para determinar si una forma cuadrática de tres variables tiene soluciones enteras. En el capítulo 4, se detalla la demostración del teorema de Hasse-Minkowski para formas cuadráticas de dos, tres, cuatro y al menos cinco variables; además de presentar algunas aplicaciones del teorema. Palabras clave: forma cuadrática degenerada, vector isotrópico, cuerpos p-ádicos, símbolo de Hilbert.

Description

Keywords

Vector isotrópico, Símbolo de Hilbert

Citation

Alegría, L. (2023). El Teorema de Hasse - Minkowski sobre Q. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Matemática]. Repositorio institucional Cybertesis UNMSM.