Teorema Normalización Poincare Dulac en Cⁿ
Date
2012
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional Mayor de San Marcos
Abstract
El presente trabajo estudia Sistemas de Ecuaciones Diferenciales Ordinarias Complejas y se demostrará los siguientes teoremas, Teorema de Linealización de Poincaré en Cⁿ que dice que un campo con autovalores no resonantes es localmente equivalente con su parte lineal y el Teorema de Dulac en Cⁿ que dice que un campo con autovalores resonantes es localmente equivalente a un campo polinomial
---This work studies Ordinary Differential Equations Systems Complex and prove the following theorems, Theorem Poincar´e Linearization in Cⁿ which says that a field with non-resonant eigenvalues is locally equivalent to its linear part and Theorem Dulac says will show that a field with eigenvalues resonant is locally equivalent to a polynomial field.
---This work studies Ordinary Differential Equations Systems Complex and prove the following theorems, Theorem Poincar´e Linearization in Cⁿ which says that a field with non-resonant eigenvalues is locally equivalent to its linear part and Theorem Dulac says will show that a field with eigenvalues resonant is locally equivalent to a polynomial field.
Description
Keywords
Campos Vectoriales Holoformos, Linealización, Poincaré-Dulac