Facultad de Ciencias Físicas
Permanent URI for this communityhttps://hdl.handle.net/20.500.12672/8
Browse
Browsing Facultad de Ciencias Físicas by Author "Acuña Huamaní, Jonathan"
Now showing 1 - 2 of 2
- Results Per Page
- Sort Options
Item Dinámica de quasipartículas en un modelo relativista para el estudio de nanotubos de carbono deformados(Universidad Nacional Mayor de San Marcos, 2023) Acuña Huamaní, Jonathan; Carita Montero, Raúl Félix; Jirón Vicente, Andrés GuiseppeSe propone un modelo matemático basado en la implementación del espacio-tiempo de un agujero de gusano para estudiar las propiedades de transporte electrónico de nanotubos de carbono deformados. Demuesta que las deformaciones causadas por estas estructuras pueden ser estudiadas a partir de la implementación del espacio-tiempo de un agujero de gusano de Ellis-Bronnikov en la ecuación relativista de Dirac. En consecuencia, ello permitió entender las propiedades de transporte electrónico en la superficie de esta estructura a partir del comportamiento colectivo de sus estados electrónicos. Por lo cual, las ecuaciones dinámicas de este sistema mostraron que las propiedades electrónicas en esta estructura se ven afectadas por la deformación de la red representadas por la presencia de un potencial efectivo. En ese contexto, usando el formalismo de Landuer, se utilizó el coeficiente de transmisión de este potencial para encontrar una expresión analítica de la conductancia, con la cual se demostró que esta estructura presenta una movilidad electrónica mínima igual al cuanto de conductancia. Asimismo, para explicar los resultados de la conductancia, se calculó la densidad local de estados, encontrando una concentración electrónica en regiones próximas al centro del nanotubo deformado.Item Solución de la ecuación de transferencia radiativa por el método de ordenadas discretas, diferencias finitas y la simulación del transporte de partículas por el método de Monte Carlo(Universidad Nacional Mayor de San Marcos, 2021) Acuña Huamaní, Jonathan; Carita Montero, Raúl FélixEstudia el transporte de la radiación cuando pasa por un medio donde experimenta los procesos de absorción y dispersión, la cual puede ser modelada por la Ecuación de Transferencia Radiativa (ETR). Para medios muy absorbentes y con dispersión nula, la ETR se convierte en una ecuación diferencial ordinaria con solución exacta. En medios donde ocurre los procesos de absorción y dispersión, la ETR es una ecuación integro diferencial sin solución exacta; por ende, para resolver esta ecuación se utilizó métodos numéricos (método de diferencias finitas y el método de ordenadas discretas). Además, se utiliza el método Monte Carlo (MC) que no resuelve explícitamente la ETR, sino modela el fenómeno de transporte que experimenta la radiación al pasar por cierto material, donde pueden ocurrir fenómenos de absorción y dispersión. Los resultados obtenidos cuando se aplicó el método Monte Carlo (MC) para resolver el problema de la placa infinita, muestra un error porcentual absoluto medio (MAPE) igual a 6.51%; mientras que, usando los métodos numéricos el MAPE es igual a 10.54%. A partir de estos resultados se concluye, que el código generado al usar el método Monte Carlo es más eficiente para resolver el problema de la placa infinita. Además, como conclusión general, se ha resuelto el problema del transporte de la radiación en una placa infinita y en una barra heterogénea. Los códigos generados en el presente trabajo son aceptables para su uso, ya que han sido validados teóricamente.