Facultad de Ciencias Matemáticas
Permanent URI for this communityhttps://hdl.handle.net/20.500.12672/7
Browse
Browsing Facultad de Ciencias Matemáticas by Author "Alejandro Aguilar, Miguel Angel"
Now showing 1 - 1 of 1
- Results Per Page
- Sort Options
Item Teoremas de Schauder y Borsuk para puntos fijos y aplicaciones(Universidad Nacional Mayor de San Marcos, 2019) Alejandro Aguilar, Miguel Angel; Coripaco Huarcaya, Jorge AlbertoMuestra la teoría de punto fijo basado en las consideraciones de orden y completitud, resaltando la importancia de los teoremas de Knaster-Tarski y Bishop-Phelps. De igual manera la teoría de triangulación y triangulación simétrica de Sn, necesarias para demostrar las equivalencias de los teoremas de Lusternik-Schnirelmann-Borsuk, antipodal de Borsuk y Borsuk-Ulam, como consecuencia se demuestra el teorema de Borsuk y las equivalencias del teorema de punto fijo de Brouwer con los teoremas de Bohl y la retracción de Borsuk. Para finalizar, se demuestra el teorema de punto fijo de Schauder y Borsuk para cualquier espacio lineal normado que son la extensión de los teoremas de Brouwer y Borsuk respectivamente, además se presenta algunas aplicaciones como son la demostración del teorema de Peano y de Krein-Krasnosel’skñ-Milman.