Qhaway: una herramienta de apoyo para el diagnóstico del glaucoma con aprendizaje profundo
Date
2022
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional Mayor de San Marcos
Abstract
Propone un método para el diagnóstico del glaucoma basado en un modelo híbrido de modelos DL, con el cual usando imágenes del fondo de ojo de un paciente se consigue hacer el diagnóstico con alta precisión. Se consideró la integración de los dataset públicos de glaucoma HRF, Drishti-GS1, sjchoi86-HRF, RIM-ONE y ACRIMA, con un total de 1707 imágenes (919 normal y 788 glaucoma) del fondo de ojo, un modelo híbrido de Voting sobre los modelos de DL ResNet50 con dos tipos de fine tuning y ResNet50V2, y la implementación usando Keras y Tensor Flow, con lo que se consiguió un diagnóstico con exactitud del 96.55%, sensibilidad del 98.54% y especificidad del 94.32%. Además, los experimentos numéricos muestran que el aprendizaje usando 5 bases de datos permite mejores resultados que por separado, incluso aplicando transfer learning, también muestran que el modelo híbrido voting genera una exactitud superior en 20.69% a la mejor exactitud obtenido por el mejor modelo de DL (DenseNet169) usando un dataset, 13.22% al mejor modelo (ResNet50V2) usando transfer learning con los 5 datasets, y 1.72% al mejor modelo (ResNet50) considerando los 5 dataset.
Description
Keywords
Inteligencia artificial, Aprendizaje profundo, Glaucoma
Citation
Flores, N. & La Rosa, J. (2022). Qhaway: una herramienta de apoyo para el diagnóstico del glaucoma con aprendizaje profundo. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ingeniería de Sistemas e Informática, Escuela Profesional de Ingeniería de Software]. Repositorio institucional Cybertesis UNMSM.