Comparación de técnicas de balanceo de datos para la clasificación de fraude en transacciones bancarias
Date
2023
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional Mayor de San Marcos
Abstract
Compara técnicas de balanceo de datos entrenando un algoritmo específico de Machine Learning, a fin de determinar cuál modelo obtiene la mayor puntuación en las métricas de evaluación de modelos de clasificación de fraude en transacciones bancarias
Para llevar a cabo esta evaluación, se implementan tres técnicas de balanceo de datos: Oversampling, Undersampling y SMOTE, en conjunción con el algoritmo de redes neuronales profundas (Deep Neural Network), utilizando datos sintéticos generados por PaySim. Este conjunto de datos simulados emula transacciones bancarias basadas en una muestra de registros financieros existentes extraídos de un mes de operaciones de un servicio de dinero móvil desplegado en un país africano.
Todo este análisis y modelado se realizó haciendo uso del lenguaje de programación de Python ejecutado en Colab PRO. Esta elección del entorno Python permitió la implementación y el entrenamiento de modelos de redes neuronales profundas en un entorno flexible y accesible. El enfoque de utilizar datos sintéticos basados en el mundo real y aplicar técnicas avanzadas de aprendizaje automático subraya la relevancia de abordar el desafío de desequilibrio en conjuntos de datos para mejorar la precisión y confiabilidad de los resultados en aplicaciones financieras y más allá.
Description
Keywords
Python (Lenguaje de programación de computadoras), Redes neuronales (Computación)
Citation
Montalvo, M. (2023). Comparación de técnicas de balanceo de datos para la clasificación de fraude en transacciones bancarias. [Tesis de pregrado, Universidad Nacional Mayor de San Marcos, Facultad de Ciencias Matemáticas, Escuela Profesional de Computación Científica]. Repositorio institucional Cybertesis UNMSM.