Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Ramos Martinez, Henry Marcos"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Implementación de una herramienta de análisis de riesgo de crédito basado en el modelo de rating de crédito, algoritmos genéticos y clustering jerárquico aglomerativo
    (Universidad Nacional Mayor de San Marcos, 2017) Ramos Martinez, Henry Marcos; Sobrevilla Cabezudo, Marco Antonio
    Propone un método para generar modelos de clasificación de riesgo de crédito de acuerdo a la metodología de rating de crédito. La implementación de esta metodología requiere construir dos grandes bloques de análisis: (1) la construcción de un modelo de puntuaciones, y (2) la construcción de un modelo de agrupación de clases de riesgo. Para construir el modelo de rating, este trabajo propone el uso de dos técnicas de la inteligencia artificial: (1) el uso de algoritmos genéticos para determinar el modelo de puntuaciones óptimo, y (2) el uso de clustering jerárquico aglomerativo para la segmentación de los grupos de riesgo. Los resultados de la experimentación mostraron que la presente propuesta obtiene un buen indicador de poder de predicción (58.9%). Además, se comparó este modelo con el modelo de regresión logística (un conocido método de estimación estadística), teniendo la propuesta actual un mejor desempeño que el modelo logístico. Se concluye que las técnicas de inteligencia artificial usadas en este trabajo muestran un buen resultado para generar un modelo de rating, y tienen como ventaja la fácil interpretación de sus resultados por un experto humano.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback