Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Larico Mullisaca, Celso Ever"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Un Algoritmo GRASP-Reactivo para resolver el problema de cortes 1D
    (Universidad Nacional Mayor de San Marcos, 2010) Larico Mullisaca, Celso Ever; Mauricio Sánchez, David Santos
    Se tiene un grupo de requerimientos de piezas con una cantidad ilimitada de barras de algún tipo de material de tamaño estándar y éste posee mayor dimensión que el grupo de requerimientos. El problema de cortes 1D describe la utilización de las barras de tamaño estándar realizando cortes sobre ellas, de manera que se satisfaga todos los requerimientos con el menor número de barras de tamaño estándar. El problema es catalogado como NP-Difícil [Garey+79], y es ampliamente aplicado en diversos sectores de la industria tales como la maderera, vidrio, papelera, siderúrgica, etc. La presente tesis propone dos algoritmos GRASP Reactivo para el problema de cortes 1D, basado en los algoritmos GRASP BFD y GRASP FFD propuestos por [Mauricio+02], además, desarrolla un sistema de optimización basado en los algoritmos propuesto. Se realizan experimentos numéricos del algoritmo propuesto sobre 100 instancias de pruebas, de donde se obtiene una eficiencia promedio de 97.04% y una eficiencia ponderada de 97,19% para el GRASP Reactivo BFD con proceso de mejoría, además se observa que el GRASP BFD con proceso de mejoría converge más rápido al encontrar una solución, donde realiza en promedio 1237 iteraciones. Los resultados numéricos muestran una mejora del GRASP Reactivo con respecto al GRASP básico implementado por Ganoza y Solano [Ganoza+02] que obtuvo una eficiencia promedio de 96.73%. Estas mejorías se pueden explicar porque el parámetro de relajación y se ajusta de manera automática y es guiada en la búsqueda de una mejor solución.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback