Repository logo
Communities & Collections
All of DSpace
  • English
  • العربية
  • বাংলা
  • Català
  • Čeština
  • Deutsch
  • Ελληνικά
  • Español
  • Suomi
  • Français
  • Gàidhlig
  • हिंदी
  • Magyar
  • Italiano
  • Қазақ
  • Latviešu
  • Nederlands
  • Polski
  • Português
  • Português do Brasil
  • Srpski (lat)
  • Српски
  • Svenska
  • Türkçe
  • Yкраї́нська
  • Tiếng Việt
Log In
New user? Click here to register. Have you forgotten your password?
  1. Home
  2. Browse by Author

Browsing by Author "Galarza Guerrero, Lourdes Angelica"

Filter results by typing the first few letters
Now showing 1 - 1 of 1
  • Results Per Page
  • Sort Options
  • Loading...
    Thumbnail Image
    Item
    Comparación mediante simulación de los métodos EM e imputación múltiple para datos faltantes
    (Universidad Nacional Mayor de San Marcos, 2013) Galarza Guerrero, Lourdes Angelica; Kraenau Espinal, Erwin
    En el siguiente trabajo se presentan dos tratamientos a los problemas suscitados en el análisis de datos con presencia de datos perdidos: El Algoritmo EM basado en la Estimación por Máxima Verosimilitud y la Imputación Múltiple para datos faltantes, ambos métodos presentan ciertas ventajas frente a los métodos de imputación simple que ocasionan la obtención de estimadores distorsionados y sesgados. El algoritmo EM y la Imputación Múltiple se aplican a un conjunto de datos obtenido por simulación, causándole la pérdida de algunos valores con el objetivo de realizar posteriores comparaciones de las estimaciones obtenidas en casos con el conjunto de datos con y sin información faltante.

DSpace software copyright © 2002-2025 LYRASIS

  • Privacy policy
  • End User Agreement
  • Send Feedback